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AND THREE-DIMENSIONAL COMPOSITES:
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Abstract—Harmonic waves in one-, two- and three-dimensional elastic composites with periodic structure are
considered. Based on a new quotient recently proposed by Nemat-Nasser, lower and upper bounds for the
eigenfrequencies are developed. For illustration waves propagating normal to the layers in layered
composites, and normal to the fibers in fiber-reinforced composites, are considered. These examples show
that the new quotient is very effective and yields very accurate results for the considered class of problems.
While these results are of interest in their own right, they can be used to check the effectiveness of various
approximate theories which recently have been proposed by various authors.

1. INTRODUCTION

This paper is concerned with eigenfrequencies of harmonic waves in one-, two- and
three-dimensional periodic elastic composites. The approach is based on a general variational
method in which the stress and displacement are varied independently [1-3). Since the elasticity
tensor in elastic composites admits large relative discontinuities, it turns out that the usual
Rayleigh quotient which in conjunction with a Rayleigh-Ritz method provides upper bounds for
the eigenfrequencies, is not quite effective, whereas a new quotient based on the more general
variational method yields extremely accurate results. When the mass-density is constant, and the
test (or the approximating) functions are suitable (for example the usual Fourier exponential
functions), then the new quotient provides upper bounds. Also, when the elasticity tensor is
constant, and exponential Fourier functions are used, the new quotient reduces to the Rayleigh
quotient, and hence gives upper bounds. In general, however, the results of the new quotient are
neither lower nor upper bounds for the exact eigenfrequencies. Based on the new quotient, the
present paper gives both lower and upper bounds, and discusses their effectiveness. With the
stress as the only unknown field, an upper bound is developed, which turns out to be much better
than the corresponding bound given by the usual Rayleigh quotient, for cases in which the
elasticity tensor admits large variations, while the mass-density varies slowly.

In Section 2 the considered problem is defined, and the corresponding Rayleigh quotient is
stated and compared with the new quotient. In Section 3 some relevant properties of the exact
eigenfuctions and eigenfrequencies are examined. The bounds are discussed in Section 4, and the
approximate nature of the new quotient is examined in Section 3. For illustration, the problem of
harmonic waves propagating normal to the layers in layered composites, and normal to the fibers
in fiber-reinforced composites, are treated in Section 6. Since for two- and three-dimensional
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composites no exact solution exists, the results should also prove useful in checking the accuracy
and effectiveness of various approximate theories which have been proposed recently [4-8] by
various authors for the treatment of waves in elastic composites.

In passing it should be noted that there are various methods by which lower and upper bounds
of eigenvalues of elliptic operators can be obtained; for discussion and further references
see [9]. The present method relates to the one which finds its root in the work of Krylov and
Bogoliubov{10], Weinstein[11], Kohn[12] and Kato[13]. The mathematical procedure in the
present work, however, is more complicated, because of the more general variational method
used, although the final results are quite simple.

2. STATEMENT OF PROBLEM

Consider harmonic waves in an unbounded elastic composite consisting of a collection of
completely bonded, identical unit cells which repeat themselves in all directions, and hence form
a periodic structure. A unit cell may consist of different constituents with differing properties,
and may have various geometries similar to those occurring in space lattices of crystals. For
example, in a layered composite, a unit cell may consist of a finite number of layers of elastic
materials, each layer being (possibly) heterogeneous along its thickness. In a fiber-reinforced
composite, on the other hand, a unit cell is an infinitely extended cylinder with, say, rectangular
or hexagonal cross-sections. Within each cell there may be a number of cylindrical fibers of
various cross-sections, whose axes are parallel to the generator of the cylindrical cell. Figure 1
shows a cell with rectangular cross-section containing one rectangular fiber, whereas the fiber in
Fig. 2 has an elliptical cross-section. In a three-dimensional structure, these fibers may have a
common length I, and may be spaced at an equal distance in the direction perpendicular to the
plane of Figs. 1 and 2. The present theory applies to these and similar one-, two- and
three-dimensional composites of periodic structures.

For the sake of simplicity in presentation, assume that a unit cell is in the form of a
parallelepiped whose three edges are defined by the three vectors 1%, 8 =1, 2, 3. Denote the
region occupied by this unit cell by %, having boundary 4%, and let X be the collection of all
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interior surfaces which separate different material constituents within the cell, It will be assumed
that 3, has a continuously turning tangent plane, although the results are immediately applicable
to cases in which 3 has sharp edges and corners that are formed by the intersection of two or
three smooth surfaces. In these latter cases, the displacement-gradient may become unbounded
at these corners and edges, while still remaining square integrable, so that the total strain-energy
within a cell is finite; the displacement field, of course, is always continuous and bounded
everywhere in R.

The mass-density p(x) and the elasticity tensor with rectangular Cartesian componentst
Cima{x) are continuouns and continuously differentiable functions in the subregion occupied by
each constituent, but in general suffer finite discontinuities across X: here x is the position vector
with components x;, j =1, 2, 3. It will be assumed that along the unit normal n on Z, these
functions admit right- and left-hand limits and derivatives; they are piece-wise continuously
differentiable in ®. Observe that, in view of the periodicity of the composite, one has
2%) = p(x+ m'1), Chomn (X)= Cymn (x+ m'PP), where m’ is an integer.

In general, Cim» is symmetric with respect to the exchange of j and &, m and n, and jk and
mn. It is, moreover, positive-definite in the sense that, at every x in &, and for every real-valued
nonzero symmetric tensor &, there exists a positive u(x) such thatf

Comnbim€in = p (X)&mbmy > 0. 2.1
For harmonic waves with frequency o, all the field quantities are proportional to e™™, where

i =%V ~1 and t measures time. Thus the field equations become
Ok T Aplly = 0, i = C)kmnum.n, ]: k,mn=123, 2.2)

where A =0”; a comma followed by an index denotes differentiation with respect to the

{Throughout this paper all quantities will be referred to a fixed rectangular Cartesian coordinate system,
iIn application, the elasticity tensor is usually piece-wise constant, and in most cases, isotropic, having the form
Citmn = ABBn + (8imBin + 8n8mi )14, Where A and p are the Lamé constants, and 8, is the Kronecker delta.
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Fiwt *1wt

corresponding coordinate; oe and ue
respectively.t
For harmonic waves with wave vector q, the boundary conditions take on the following

quasi-periodic form:

are the stress and displacement fields,

u(x+1°) = u;(x)e"”,

tx+1°) = — t;,(x)e’*”, for x on 0%, (2.3)

where t; = ouny is the traction vector which must remain continuous across any interior surface.
In particular, one must have

[op(xX)— op(x ). =0 forxonZ, 2.4

where -1, is the unit vector on 3, pointing from one subregion, say, subregion 1, to the adjacent
one, say, subregion 2, oy (x") is the limiting value of the stress as a point on X is approached along
the normal from within subregion 1, and o (x7) is the limit when this point is approached from
within subregion 2.

The objective of the analysis is to solve equations (2.2), subject to boundary conditions (2.3)
and continuity conditions (2.4), for the continuous and piece-wise continuously differentiable
displacement u;, and to obtain the eigenfrequencies w = VA as functions of the wave vector q.
Note that, for nonzero q, conditions (2.3); preclude nonzero constant solutions.

It will be assumed that the eigenvalue problem

- % (Cjkmn um,n)‘k =A U, (2.5)

with boundary conditions (2.3), oy being defined by (2.2);, admits an infinite set of positive
distinct eigenvalues 0 <A, <A2<A;...<A,... which become unbounded with n. The
corresponding orthonormal (with weighting function p) eigenvectors will be denoted by {¢™}, so
that

(&)™, &™) = Buny (2.6)

where 8. is the Kronecker delta, and the inner product is defined by

(gu, vy) = j guidy, 2.7
R
g being a suitable real-valued weighting function, and * denoting the complex conjugate.
It is known that the pth eigenvalue is given by the infimum of the Rayleigh quotient:

A-R = <C]kmnum.n, uj,k )/(pu]q Ll,), (2.8)

+In the sequel g, and u; will be referred to as the stress and displacement fields.
$Quotient (2.8) will be called the “displacement Rayleigh quotient™ as contrasted with (4.7) which is the “stress Rayleigh
quotient”.
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subject to the constraints
<Pu1’ (PJ(”)) = 0’ n= 1’ 2’ NS 1, (2’9)

where this infimum is taken on the set of all vector-valued (with complex-valued components)
functions, V, which, say, is continuous and piece-wise continuously differentiable, and which
satisfies (2.3),. If the class of functions which satisfy (2.3),, and for which the integrals in the
right-hand side of (2.8) are finite, is denoted by V, then the pth eigenvalue is given by the
minimum of (2.8) on this class, subject to constraints (2.9). Denote by V' the subset of V, which also
satisfies (2.4).

In practice it is very difficult to choose test functions which satisfy continuity conditions (2.4).
One often selects an orthogonalt sequence of functions {f**’(x)}, a, 8,y =1,2,..., M, which
are continuous and continuously differentiable, and which satisfy the quasi-periodicity condition
(2.3),. Then, one considers an approximate solution

M
= Urfe(), 2.10)

a,B,y=1

substitutes into (2.8), and minimizes Ar with respect to the unknown coefficients U**", to arrive
at a set of 3M> linear homogeneous equations for these coefficients.t The roots of the
determinant of the coefficients in these equations then yield upper bounds for the corresponding
first 3M* eigenfrequencies.§

For composites in which the elasticity tensor admits large discontinuities, this method is not
effective. To remedy this, the following method[1-3] which turns out to be extremely effective,
can be used.

Instead of (2.5), consider the original equations (2.2), and let & be the set of all second-order
symmetric tensor-valued functions with complex-valued components oy which are each square
integrable in ®. Assume further that o satisfies (2.3),. Denote by v’ the subset of o, which is
piece-wise continuous and continuously differentiable in &, and hence satisfies the continuity
conditions (2.4). Now, the elements u; of V and oy of v', which satisfy (2.2), render the following
functional stationary, as can be verified by direct calculation:

An = (Tt ine) + Uiy Te) = { DitemnG it O ) [ plhs, ), (211

where Dy is the elastic compliance{ whose matrix is the inverse of that of Cm. ; note that Dy,
is positive-definite in the sense of (2.1).
For approximate solutions set

It is not necessary that this sequence of functions be orthogonal, but they must be linearly independent. This
orthogonality is defined such that (f*#”’, f* ) is proportional to 8,6 8s, 8., 8.¢ being the M-dimensional Kronecker delta.

iNote that the superposed bar in (2.10) denotes the approximate solution.

§Collaz[14], p. 239, calls (2.8) Kamke quotient, for which the test functions need only satisfy the “essential” boundary
conditions (2.3),; conditions (2.3), and (2.4) can be suppressed. With suitable test functions, the Rayleigh-Ritz method always
gives upper bounds. This follows from Poincare’s minimum-maximum principle.

YFor isotropic materials and in plane strain, for example, this is given by

Y S

111
Dy = ﬁ[;a,makn +0bin) =35

a,ksm],

where A and p are Lamé coefficients, and 8, is the two-dimensional Kronecker deita.
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M

5'jk= z Sg;:ﬁ'y)f(aﬂ'r)(x)’ (212)

aBy=1i

substitute this and (2.10) into (2.11), and equate to zero the derivatives of Ax with respect to the
unknown coefficients, to arrive at the following set of 9M° linear homogeneous equations for
these unknowns:t

Gk + Anpll, f57 > =0,
<Dikm"&m" - a(i'k)’ f("B’/)) = 0’ j’ k) ms n= 1. 2» 3»
aBy=12......M. @2.13)

Equations (2.13), which are 6 M’ in number. can be solved for S52*" in terms of U**”, and the
results substituted into (2.13),. This leads to a system of 3M” linear homogeneous equations for
the latter unknowns. The roots of the determinant of the coefficients of these unknowns then are
the approximate values of the first 3M” eigenfrequencies. The corresponding approximate
eigenfunctions are then given by (2.10) and (2.12), where (2.10) can be normalized as

(pity, ;) =1 (2.14)

which also normalizes (2.12).
Denote by Ax®’ the approximate pth eigenvalue obtained from the new quotient in the manner

discussed above, and note from the structure of equation (2.11) that this eigenvalue is always real.

Desngnate the correspondmg displacement and stress fields by #®’ and &{¢’, respectively, where

=12,....,3M*=
Remark I. Subject to the normalization (2.14), the approximate displacement and stress fields
are each an orthogonal set in the following sense:

< p a P) (q )) qu’
{DieornG 5, 550 = VAN AN 850 (2.15)

Proof. From (2.13) and the fact that ¢’ = ¢’ one first obtains

(Djkmnagf); 6'(:');) (u:p), U'(q)>
= ~<uf(P) 65'?!( y

@, 54800 = = AWPpia®, 7). (2.16)
From the combination of (2.16);., it now follows that
(DiomnG 8, 530 = AN 0, 7). Q.17

Exchanging the role of p and g, and using the resulting equation with (2.17) and (2.16), one
immediately arrives at equations (2.15).

Henceforth it will be assumed that all the displacement fields are normalized according to
(2-14).

}Note that, because of the symmetry of oy, S®”” = Si37. Also, note that ., = g, + b,
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Remark 2. Set p = g in (2.15), and obtain
(Djkmno-'gf), 6’3-’:) = )\N(P)- (2.18)

Whereas in the case of the Rayleigh quotient (2.8) one arrives, by a Rayleigh-Ritz method, at
upper bounds for the eigenfrequencies, the new quotient (2.11) in general yields neither upper nor
lower bounds. It is therefore interesting to note the relation between Ar and A as follows.

Remark 3. For every element u; in V and oy in 9, one has

AP = AN 2.19)
Proof. Calculate Ax™ ~Ax™ as follows:
A=A = { Ciramldy oy Utm ) + { Dm0ty Otm ) — { Gy Uy i) — {Uiky O

= {{Cptonn (U1 = DigrsOrs ), (Umn — DimnpqOpq N =0. (2.20)

~ is not

Note, however, that, although Az is not less than the exact eigenvalue, and that A

greater than Az, one cannot in general conclude that A~ should necessarily be better than Az,
although all examples considered so far strongly suggest that this indeed may be the case.
When the mass-density is constant and the approximating functions are suitable, for example

they are in the form

fBY = gilame e n ] (2.21)

then, as is shown in Section 4, Ax®’ becomes an upper bound for the exact A,. In Section 6 it is
illustrated that Ax®’ is then a very accurate upper bound for the considered class of problems.

3. ON PROPERTIES OF EIGENFUNCTIONS AND EIGENFREQUENCIES

On the space V with inner product (pu;, u;), the orthonormal set of eigenvectors {¢"’} is
complete. Since the approximate solution #®’ is continuous and continuously differentiable in @R,
it has the Fourier series

=

a}(p) = z C..(p)(pj("), C,,(p) = <pﬂ](p)’ ‘Pi(n))’ ] = 1’ 2’ 3’ (31)

n=1

where the coefficients (3.1), satisfy Parseval’s equality

Zl |C®1 = (ou™, u®’y = 1, (no sum on p).t (3.2)
It will be useful to set
lp}:) = Cjklm‘Pg.':r)u ja k’ l, m = 1’ 2’ 3’ (3-3)

tUnless otherwise stated explicitly, only repeated subscripts (but not superscripts) are to be summed over their range
of variation.
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rewrite (2.2), as
Yiex+ Apei™ =0, (3.4)
and observe that ¢ satisfies
Ry + MDuwap =0, JikLr,s=1,2,3, 3.5)

where R = 1/p. It now immediately follows that the sequences of vector-valued and symmetric

tensor-valued functions, {¢/$xx/A.} and {¥/5’/A/A.}, are orthonormal in the following sense:

(RYEkd Any 057 M) = By
(DjrstW S 1N Any ¥5° 1N/ A} = 8remy (nO sum on n and m ). (3.6)

The form (3.6), de_ﬁnes a norm for the space V, whereas the form (3.6), gives a norm on v, so
that for every & in V and every ow = gy in b, one has

N ] = (ots, w), llowl = {DirsOrs s ). 3.7

From (3.4) and the completeness of {¢™}, it follows that {y{r}/A.} is also complete on V.

For the approximate solution G2’ which is continuous and continuously differentiable in R,

consider the following formal Fourier series:
Fw~ Z ALY, ~ 2 AU, (3.8)

and observe that

(Dyam@ 3k, ¥im) _ (RG ks Wit
T Dy, b5 (RUS, d50)

A Py _ A P) __ (3 9)

From the completeness of {jii/A.} it follows that the series in (3-8). converges in the
mean-square sense (with respect to the weighting function R), and one has the Parseval equality
for the pth mode,

G? = Z A ASP = (RG R, G00). (3.10)

Remark 4. On the complete space & whose norm is defined by (3.7),, the orthonormal set

{¢§\/A.} is complete.
The proof of this assertion may be sketched as follows. From (3.5) it follows that

A = RSy WD Dipamth @, Wine (3.11)

tUnless otherwise stated explicitly, only repeated subscripts (but not superscripts) are to be summed over their range of
variation.
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is the eigenvalue of (2.8), which goes to infinity with n. Suppose now that 7 = 7y, an element of v
which is a dense subset of &, is orthogonal to ¢’/\/A. for all n. From the Rayleigh quotient it
follows that

1
= {{DsamTits Tim MRy 70} > 0.
But, since 1/A, goes to zero with n, one obtains (Dy. T, T ) = 0. However, the left-hand side of
this equation is positive-definite (see (2.1)), which implies that 7 = 0.

From this result one observes that the series in (3.8), converges with respect to the norm
(3.7).. One also has the following Parseval’s equality:

> AnlAPF = (D i, 6100 = 6501 (3.12)
n=}

Comparison with (2.15) now readily shows that
W= (OD, ) = (DuanD, T2

=2 MlAST (3.13)

This and (3.10) will be useful in the following developments.

4. UPPER AND LOWER BOUNDS FOR EIGENFREQUENCIES

Since the exact eigenfrequencies are discrete, positive, and ordered in the ascending manner,
for positive fixed integers n and p, one has (A, — A, )(Ax — Ap21) =0, which yields

A=~ (Ao + Aps)An + ApAp 1 = 0. 4.1)

Consider now the approximate pth eigenvalue calculated from (2.11) and (2.13), and denote it and
its corresponding approximate eigenfunctions by Ax®’, #® and ¢’. With (3.10) and (3.13) in
mind, transform (4.1) tot

> AAAPT = Mo + A1) D Al AP+ Mphpr D, |ALF 0. 4.2)
n=l n=1 n=1

Now consider the approximate Ax®’, and define

RIS, K= S A “

Remark 5. If Ax® is such that A, < Ax® < A1, one has the following bounds for the exact
pth eigenvalue A,:
- G - ) _ G® — (h.
@ — ( _{vm) <A <@+ — (AN")) .
Ap+1'—AN AN _A-p-—l
1In all equations in this and the remaining sections, p is fixed and hence no sum is implied on repeated subscript or
superscript p's.

4.4)
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where
G'(p) — <R&]£k, 0'§p1))/K(p) (45)

To show this, from equations (3.10) and (3.13), and definitions (4.3), observe that (4.2) can be
rewritten as

G™ = () + (hp = ™)k = W) 0. 4.6)

Since A,., is greater than An®’, this inequality immediately yields the first part of (4.4). The
second part of (4.4) can be obtained in a similar way.

The result (4.4) is only of a formal interest, since it involves quantity K®’, given by equation
(4.3),, which is not known; K’ can be calculated for the one-dimensional case, as is shown later
on. For the first eigenvalue, however, one can obtain another upper bound which is useful, and is
sharper than that provided by (4.4),t for cases in which p varies slowly and smoothly while Cim
does not.

Upper bound. Of course, the Rayleigh quotient (2.8), in conjunction with a suitable
Rayleigh-Ritz method, always gives upper bounds. But for the present class of problems? this
quotient turns out to give very poor upper bounds. On the other hand, the “stress Rayleigh
quotient” corresponding to (3.5), i.e.

(ROkky Okt
Aa = {Dirsort, 0vs)’ @7

yields, for the approximate solution &%,

=
T (g = (D (RG jicks G res
M=Ar (Gi) = ~=th
(D]IrsU)l 3 ars)

©

3 MAE

MlAP

4.8)

uMBﬂ

which can be calculated, and happens to yield a much better bound (in particular when R is
smooth) than the “displacement Rayleigh quotient” (2.8) which gives a sharper bound when Cimn
is smooth but p admits sharp variations or large relative discontinuities; this is illustrated in
Section 6 (Table 5).

As of now, it is not clear how the quantity K® in (4.3) to (4.5), can be calculated for two- and
three-dimensional problems. For the one-dimensional case, however, one can calculate K’ in
terms of the approximate expression for the stress. This is discussed below.

One-dimensional case. In this case, equations (2.2) become

o'+ Apu =0, o=nu', - 4.9)

RPN

a
s=x=
2

tIn the one-dimensional case where (4.4) can be used directly (see section 6).
tl.e. when Cy,n., has sharp variations within the unit cell, or when it admits large relative discontinuities.
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with boundary conditions

u(f) = u(-E)e, of2)=o(-L)e

where prime denotes differentiation with respect to x, 7 is the elasticity coefficient, the length of
the unit cell is denoted by a, and g is the wave number. The new quotient becomes

AN = ((0" u,> + <u,’ U) - (DO', U))/(Pus u>9 (410)

where D = 1/7. The approximate solutions are

M M
i= Zl U@ 5= azl S @.11)

where the linearly independent set of functions {f**’} satisfies the quasi-periodicity condition
F*%a/2) = f*)(~a/2)e'". Then equations (3.10) and (3.13) reduce to

G = ,.Z, )‘nzlAn(p)F = (R, &(p)')’ “4.12)
AN(” = "ZIA"lA"(P)Iz - (6,(17), ﬂ(p)') - (D&(p), &(p)). 4.13)

To calculate K@, define
p® = A+J:x/ D(f)&(‘”(g) dé,
af2
A= f . D@OF7@ dgfe* - 1), .14)

and from Parseval’s equality relating to the expansion of v in terms of {¢“™’} obtain

K® =2 |47 = (o™, v®). 4.15)

Numerical results show that (4.4) gives very accurate bounds in this case; see Section 6.

For the one-dimensional case, the upper bound, however, can be improved considerably. In
fact Ax'” itself is an upper bound for the first eigenvalue. To see this, use the Rayleigh quotient
(2.8) with v*” as the trial function, arriving at

Ay $Xx(vm)=7#‘ﬁy* = . (4.16)
Note that, since
MASE P ARy —ay
/\N(n:;-:: il <n§=“x l _{R&®,¢V)_ =4

[} = =~z = ~m =y — AR ,
K (D&, a"")
An(l) 2 A" An(l) 2 ’

n=1

4.17)

the upper bound (4.16) is superior to that given by (4.8).
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Lower bound when p is continuous. In many cases it may happen that the mass-densities of
various constituents of a composite are the same, while the corresponding elasticity coefficients
differ considerably. In such a case, it may be useful to consider another lower bound which can
be used for one-, two- and three-dimensional problems, provided that the exact eigenvalues are
not too close to each other.

To obtain this bound, multiply (4.1) by |[A.*’]* A., sum on n, and arrive at

Z AP — (N + s )G® + Aphp cidn® 2 0. (4.18)

Set

H(p)= i Ans,An(p)tz‘ I_'I(p)= H(‘”/)m("’, G(p) G(p)//\ <p) (4.19)

n=1
Remark 6. If H® is finite and G® < A,.., then

H(p) Gv(p))

G =™ (4.20)

To use this bound, one must calculate H®’, When R(x) = l/p(x) is continuous and, say,
continuously differentiable in ®, and when the sequence of the approximating functions, {f**"’},
is such that the approximate solution 75’ is, say, twice continuously differentiable,t one can
calculate H®.

To this end observe from (3.3) and the completeness of {¢’} that the set of symmetric,
tensor-valued functions, {¢{h}, is also complete, and that {¢{})/\/A.} is orthonormal in the
following sense:

(Cirs Gy @) =V (AoArn ) S .21
Now, define
[RG&0 = H[RG T + [RGEAL, 4.22)
and obtain
—{Ciirs [RGEUL 0, @y = A2 AL, (no sumon n), (4.23)

where A, is defined by (3.9). Hence one arrives at
- [Ré—gﬁgkl.l) = Zx )tnAn(p)Qofynl)) 4.24)
and the Parseval equality

(Cima [RGE 00, [REEL L) = 2, MTJAL = HP, (4.25)
n=1

{This is not a necessary condition. It suffices that {Cp., (RG{0).. (RFE)) ) be finite.
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Note that the condition G® < A,.. places a severe restriction on the usefulness of the lower
bound (4.20); for illustrative examples see Section 6.
New quotient as upper bound. Consider the special case when the mass-density p is constant;

for simplicity set p = 1. Choose the approximating functions (2.21), and observe from equation
(2.12) that

M
6,?;_),(: 2 “/j(aﬁv)(p) (aﬂv)’ (426)

where W{**"® are constants. From (4.26) and (2.13), it now follows that

<6’§f 54)) )«N“”<u“”, 6.(;1)

— ( )
= ANP (Djkmna' mny 0'1? )

= A" 830, “4.27)

where (4:27), is obtained from (2.13),, (4.27); from (2.13),, and (4.27); from (2.15),. Now, from the
stress Rayleigh quotient (4.7) with R = p = 1, one deduces that

=(p)

= A
M =P = —————-—<Djkm’:;§n ,).,’l(‘T(p)) (4.28)

Remark 7. With test functions (2.21) and when p is constant, the minimization of the new
quotient gives upper bounds, i.e.

N = A, (4.29)

Proof. Consider the Rayleigh quotient (4.7) and a solution in the form
”
oy =D, Lo (4.30)
p=1

From (2.15), it follows that &%, p =1, 2,..., M, are linearly independent functions which,
according to (2.21), satisfy the boundary conditions (2.3).. Hence minimization of (4.7) with (4.30)
as the test function and &’s as the unknown parameters yields, in view of Poincare’s
minimum-maximum principle,t upper bounds for each of the first M eigenvalues. But because of
(4.27) and (4.28), the corresponding approximate eigenvalues are given by A~ . Hence one
arrives at (4.29).

Remark 8. With test functions (2.21) and when the elasticity tensor Cy. is constant, the
minimization according to (2.13) of the new quotient, yields upper bounds equal to those obtained
by the minimization or the displacement Rayleigh quotient (2.8).

The proof of this assertion follows immediately from equation (2.13), which shows that, for
constant compliance tensor Dim., one has

72} = DitmnG o 4.31)

1The same result follows from Courant’s maximum-minimum principle[15].
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foreach p=1,2,...,2M + 1. Remark 3, expression (2.20), then implies that Az’ = Ax®’, and

since a Rayleigh-Ritz procedure is involved, one arrives at upper bounds.

5. ESTIMATE OF ERRORS

It is known that if the square root of the mean-square error in satisfying (2.5) is ¢, then the
error in the Rayleigh quotient will not exceed €’. At this point, the same result cannot be
presented for the new quotient (2.11). But, one can obtain a certain estimate for the

corresponding errors.
To this end, define the error functions

—(p) _ =) _ (0 _ 1 (D (D
DG ik — U Emy = €m) = 3[€im + €,

= =) 2
G+ AN o = 2,
and calculate the average errors
¢} (1) \1/2 2) (2)\1/2
<C!klme(lr)n), euky = €1, (Re;”, ¢,7) " = €a.

From (3.1), (3.8) and (3.9), it follows that

w©

Rej(Z) = Ra—_g"i + A"(P)ai(p) = "Zl (ANC"(P) _ AnAn(p))(Oj("),
and hence
622 = ni;l |)\N(p)cn(p) _ A,.A,,(P)'Z.
Moreover, one has
Cuanellar = 5% ol = 3, (4,7~ COY,

and hence

-
&’= D MAS - CEL

n=1

(5.1

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Equations (5.4) and (5.6), together with equations (2.13), suggest reasons for the effectiveness

of the new quotient.

To begin with, one observes that if €, and e, approach zero as M becomes large (i.e. as more
terms are included in the approximate solutions (2.10) and (2.12)), then from (5.4) and (5.6) it

follows that

|A® = C®)>0and AN C." - LA » 0 as €, €20,

Hence if AN™ # A,, then A’ C.%’-0. On the other hand, since 2 |C,*’F =1, not all C,*”s
n=1
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can vanish. For C,”’ # 0, then one obtains
AP 5 CP > 1and Av® > A, as €, €, 0.

Now assume that the approximating functions f“*” are such thatt the error functions e{j,

and ¢ admit the following Fourier series:
[¢)) (aBy) glaBy) 1
eih= > EGEVf®,  ESEY =(eld),, f),
a,By=1
ej(2)= 32 l Ej(uﬂv)f(aﬂv), E(«Bv) ( e(2) f(t#h)) (57)
By =

and that the corresponding coefficients satisfy Parseval’s equalities

o o

(eGoy, e = 2 IE“’" " and (¢, ¢*) = 2 |E~*7F, (-3
l!

a,B,y=1

respectively. Equations (2.13) show that the first 6M° terms in the right-hand side of (5.8);, and
the first 3M? terms in the right-hand side of (5.8),, are identically zero, i.e. the corresponding
errors have zero projections on the first M* coordinate functions f“**. This suggests that, as M
becomes unbounded, the mean-square errors (5.8), and consequently the errors €, and €, in (5.2)
should approach zero, provided that the approximating set {f***”’} is suitably chosen. Note that
since e{in, and ¢ are dependent on M, no definite conclusion can be deduced from (2.13) and
(5.8). These equations are not, by themselves, sufficient to guarantee that €, and €. vanish with
increasing M.

Remark 9. When p = constant, then AN®’ > A, as M >,

The proof of this assertion follows from the fact that the approximate solution &%’ minimizes
the Rayleigh quotient (4.7) in a proper Rayleigh-Ritz procedure (see Remark 7).

Whether p is constant or not, one can obtain an error estimate for An®’ using (5.4) as follows:

lAN(p)Cp(p) _ )\pAp(p)l > MN(p) _ Ap "CP(p)| _ ’\plAp(p) _ Cp(p)l.
Then from (5.6) one obtains
|CPIIANT ~ Aol = V(Ap)er + €. (5.9)

Since €, and e can be calculated from (5.2), (5.9) provides an estimate for the accuracy of Ax"";
instead of A, in the right-hand side of (5.9), one may use AN™’.

6. NUMERICAL RESULTS
The theory presented in the preceding sections will now be applied to composites whose unit
cells consist of two constituents, each homogeneous and isotropic. Waves propagating normal to
layers in a layered composite will be considered first, since the corresponding elasticity problem
can be solved exactly, and hence provides a good check on the accuracy of the results. Then
waves propagating normal to fibers in fiber-reinforced composites with rectangular (Fig. 1), and
elliptical (Fig. 2), fibers will be treated.

tFor example, normalized expressions (2.21) are used.
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For all the problems mentioned above, equation (2.13) with test functions (2.21) can be written
as

QU+HS=0, H*U+dS=0, 6.1
which can be solved to yield
S =-®'H*U, [Q-H® 'H*JU =0, 6.2)

where U and 8 are vectors of the unknown coefficients in the approximate expressions for the
displacement and the stress fields, respectively. The other quantities in equations (6.1) and (6.2)
depend on the specific case, as discussed below.

Layered composites. Let the unit cell of length a be composed of two materials, one
occupying region -af2=x =—b/2 and b/2<x < a/2 and having mass-density p, and elastic
constant 7, the other occupying the region |x| < b/2 and having mass-density p, and elasticity
constant 1.; D1 = 1/7, and D, = 1/%,. For functions f choose €' ®**™*, where ¢ = x/a, and
Q = qa. The unknowns U and S are (2M' + 1)-dimensional vectors with components U and
S o =0,%£1,...,2M';in (4.11), M =2M' + 1. The matrix Q = [Q2,..] and the diagonal matrix
H=[H...] are defined by

0= VZ(YH +-n;2)(n1 + ‘)’nz)ﬂ

0~1 sin[w(m—n)n.].
G - nT b mm=n) if m#n,

1if m=n,
Hom=i(Q +27m), (6.3)

and the matrix & is obtained by replacing in matrix €, (8 — 1)/(n.+ 6n,) by (1 - y)/(yn. + nz). In
equation (6.3), the following notation is used:

1/2

v=aw@/q)"”, M=mmitnem, p=nipitnap,,

a-b
a

n=2=b n2=§, y=nalms, 8= palpy, 6.4)

where o(=V) is the wave frequency, and v is the dimensionless frequency which is to be
calculated as a function of the dimensionless wave number Q.

With all quantities in (6.2) fixed, one obtains the approximate values of the first 2M' + 1
eigenfrequencies by setting the determinant of the coefficients of U in (6.2). equal to zero.
Equations (6.2) then give U®’ and S® for the pth mode. Note that for the actual calculation it is
not necessary to normalize .

For the calculation of the bounds, one first obtainst

tNote that in order to obtain G, one uses in (6.5) U and $’ which are U and § with components U and §*
corresponding to the pth mode.
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=M’

ﬁz S(a)s(ﬂ)* (Q +2ma)(Q +2 B)m—;—))ﬂz_]_i- Iﬁ IS“P(Q +2ma)’
A Tdpy -

G=R

=M’

0—-1 sinfm(a-BInl , X
(@ 7B (@)2
2 U e ra—p) T IU

a®xf

(6.5)

where
R = (71pa*)’(n, + n2/0)(n1 + 0n2)[(ny + nafy)(ny + yn)] 2 (6.6)

Then, one calculates K = {pv, v), arriving at

=2 Al

— 3 2 > (@) @ (B) (0/‘)’2_1) sin [7(a — B)n,]
a’pDy [BES S *{K'+(Q+2m>(o+2wﬁ) (@ —B) }

a*®g

+ E ISP { %%M}] 6.7)

where

{[(—— 1) sin [(Q +2ma)n2/2] + sin [(Q +2m)/2]](—';‘n+(—Q"720)—)

+4[(“- 1) sin [(Q +2ma)nf2] +5in [(Q + 2m)i2] | ((81(%))

—2[(nl + 126) cos (mra) + (% - 1)(1 — ) sin (Q[2) sin [(Q + 2ma)ns/2]

+ (% - 1)n20 cos [Q(1 = n2)/2 - mxnz]]}[(%— 1) sin [(Q +278)na/2]
+5inl(Q +27B)/2] [(Q +2ma)Q + 27) sin (Q/2)]

+ 4{[ c0s [(Q +2mwa)na/2] — cos [(Q +2ma)/2]] (% - 1) sin [(Q +2mB)n2/2)
+ [sin [(Q + 2ma)naf2] ~ sin [(Q +2ma)/2]] cos [(Q +2mB)/2]

-2 sin((Q + 2maym2| (1-1) cos Q-+ 2mB)nal)

+cos [(Q +2m8)12] | (@ + 2ma (@ + 278))

+ {2(1 - nz)(%— 1) sin [(Q + 2ma)na/2[sin [(Q +27B)/2]

+ (%— 1) sin[(Q + 21rB)n2/2]] + (1 + n26) cos [(a — B)]

+ nzo(é— 1)[(%— 1) cos [m(a - Byns)

#2¢05[Q(1 = )12 m(B - ana)]| J(Q +2ma)(Q + 27B)) 6.8)

S&S Vol. 11 No. 5—H
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Direct substitution into (4.4) now gives lower and upper bounds for »* which relate to w® by
equation (6.4),, where for A,.; and A,_; the corresponding approximate values may be used.

Numerical results are given in Table 1 for n./n: = 100, p./p: = 3, and indicated values of @
and M’. In this table, v, v, iz, and v, respectively, refer to the lower bound, upper bound
calculated from (4.4), the values of v obtained from the Rayleigh quotient (2.8), and the value
given by the new quotient (2.11). The quantity #v = (v~/K) which is the dimensionless form of
A see (4.16), is also reported in this table. As is seen #x is a very close approximation for the
exact ». These results strongly suggest that 7» should be upper bound for all corresponding
eigenvalues, but this is true only for the first eigenvalue.

Table 1is for M' = 1, i.e. the crudest approximation, and for M’ = 5. Here, for each value of
Q, the corresponding values of the wave frequency for the first two and for the first five modes
are listed, for M' =1 and M’ = 5, respectively. As is seen even for M’ = 1 the bounds are very
good. The bounds, as well as the value of v~ improve as M’ is increased. This is illustrated for
M’ =5,

Table 1. Layered composites. Eigenfrequency v and its lower and upper
bounds for first two modes: 1, = n, =3, 8 =3and y = 100

M =1
Equation Upper
Lower New 4.16)* bound  Rayleigh
bound  quotient o= Exact 4.4) quotient
Q 2 Vi K v Y. 7

10 01932 0-1934 0-1933 01933 0-1999 0-4604
1-3509 1-3548 1-3629 1-3616  1-3951 57947

26 03534 0-3541 0-3546 0-3544 03688 0-8541
1-279% 1-2776 1-2886 1-2873 13204 51731

30 04317 0-4297 0-4341 0-4336 04510 1-0831
1-2251 1:2462 1-2403 1-2386  1-3066 4-7414

M'=5
0193 0-193 0193 0193 019 0210
1-361 1361 1:362 1-362 1-364 1-633
16 2495 2-497 2-497 2497 2501 3014
3754 3 3773 3773 3797 5079

4-909 4938 4-945 4942 4995 6683

0-354 0-354 0-354 0354 0359 0-384
1-287 1-287 1-287 1-287 1-289 1-356
20 2543 2-545 2545 2545 2-549 37
3713 3728 3-730 3730 3756 4-991
4-958 4-985 4-996 4-993 5-041 6-847

0-433 0-434 0-434 0-434 0440 0-467
1-238 1239 1:239 1239 1:239 1-505
3 251 25n 2574 2-573 2:576 3-116

3-687 3704 3-705 3703 3733 4931
4.992 5002 5029 5025 5069 7-020

tFor each value of Q, only the first eigenvalue calculated from (4.16) will in
general be an upper bound for the corresponding exact eigenvalue.

tThe test functions (2.21) now become
f(a@) - el(q‘x‘+qlx2+2mv‘+2ﬂﬂxl)

In this section it is assumed that ¢, =0 and ¢, = q.
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Fiber-reinforced composites. The quantities which enter equations (6.1) and (6.2) will now
have the following definitions.t U= {U,, U,}" is a 2(2M' + 1)>-dimensional vector with compo-
nents U“®,j=1,2,a, B=0,%1,..., +M', where superposed T denotes transpose; S = {Si,,
S12, S22} is a 3(2M’ + 1)*-dimensional vector with components Si*’; the matrix & = [T, J)] is
22M' +1)°by 2@M’ + 1%, ® = [&(I, }is 3QM' + 1)’ by 3CM’ + 1) and H= -H" = -[H({, N]"
is 2@M' + 1) by 32M’ +1)%.

The matrix £ is defined as follows: (i) For 1=(a +1+ M)+ (B +M"D2M'+1) and
Jily +1+ MY+ B+ MM +1), 0, B, v, 6 =0, £1,... =M’ one has:

(a) composites with rectangular fibers (Fig. 1),

(6-1) sinm(8—B)mssinm(y—aln;
1m0 m(6-B)  aly—a) 27V RS

(0 —Dnysinw(6—B)m,
(7 + 7120)w (8 — B) =% B,

2
Q(Il, -’1) = ‘VE 1
(6 — )m, sin w(a — y)n,

Gt mb)rla—y) ° 27PB=d

. a=y, B=8 (69)
(b) composites with elliptical fibers (Fig. 2),
6-1 J.(R )
(ﬁ(,+ﬁ2)0) 2mz 1(R) m " if a# vy, andfor B# 4,
2 - _ —
I L e (e
1 if a=y, =8, (6.10)

wheret Jy(R) is the Bessel function of the first kind and first order with argument
R =w{n(a — y)"+ ms*(B - )}
(i) For L=1,+QM'+ 1)’ and J.=J,+ (2M’ + 1Y%, one has
Q(L, ) = Q, Jb), and QI J)) = QL;, J2) =0. 6.11)
In these equations, the following notation is used:$

2_ 2 2=iFA - (D 2) = ~ _ = ) =
V=0 a4 P/Cnn, p= P( ’n, +P( )nz, Cun= C(11)11"1 + C(nunz,

_ - — bib; _ pm _ b b,
Ay =1- i, nz—alaz, 0—p(1), nz—al, mz—a—z,
d= II(C-l!llDllll), _uu = D(lll)llﬁl + D(lzl)IIﬁZ- (6.12)

The matrix @ is defined as follows: (i) For I, =(a +1+ M)+ (B8 +M')2M'+1) and
JLi=(y+1+ M)+ (8 +M)H2M' +1), ®(I,, J,) is obtained from (6.9) if one replaces (8 — 1)/(a, +

tNote that J, is an integer, while J,(R) is the Bessel function.
mbib;

tFor elliptical fibers 7, must be replaced by Taa
142
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ﬁza) by ('}'1111“‘1)/(ﬁx+ﬁ2'}’||n) and omits VZ/d.', (ll) For 13=Il+(2Ml+1)2

and ]: =

Ji+ (@M’ + 1Y, and when a# y or B# 8, ®(L, I) is obtained from (6.9) if one replaces (»))/(d)
(8 — D(7is + 7126) bY 4[{(y1212 — DR 1202/(A: + A2v1111)]. When o = y and B = §, then for composites
with rectangular fibers one has ®(L, J2) = 4{(fi1 + M2y Rzl (Ay + Azyin)]. Also @, J2) =
(L, J))=0. (i) For L= L+2M' +1) and Jo=J.+ QM’' + 1), one has &I, J;) = &I, J),
DI, J3) = B(I;, J.) = 0, ®(I,, J5) is obtained from P(I,, J,) if one replaces in the latter 4R 1,1 and
Yi2i2 BY Ryuze and 1122, respectively, and (5, Ji) = ®(1,, J5). Here, the following notation is

used:

2 1
— Diki)m R _ D:k;m
Yikim = D¢ T jklim — D(]) N

jkim 1111

J» k, I, m not summed.

The matrix H is defined as follows?

- __fQ+2my ifa=vy and B=34,

H(l, 1) ’{0 ffary or B#S
_.f2mén, ifa=y and B=46

AL, 1) = {0 ifa®y or B#8,

I:I(IZqu):ﬁ(Ith)o ﬁ(13,12)=ﬁ(12,],), R(Ih-]z)=g(1’3,fl):0~

where

ay
2¢) —
az

To obtain an upper bound for the first eigenvalue, one calculates
/\=R“) = (RU;"()’“ 0;:3)/(D)kpq0';l‘c)s Upc}} RB/T

where

=M’ =M’ —
B= 5> s-4-8 g, 3 gl-Omp

ws=0 (A0 +A2) aprs=0 (M0 +fi2)
azyBesd ®=y,p=8
T S L) LIS S
a,B,v.8 =0 (n19+ “) ? ,B,7.8=0 ’
EEIN- T a=vy.f=8

S =SEPSIIXQ +2ma)(Q + 2my) + SIS *(4 867,
+ S ST Qmpn. (Q +2my)) + SESE *(2mén, (Q + 2ma)),

and where B,, B, and B; are defined as follows.

tNote that the vector q has components ¢; = q, g.=0. Then Q = qa,.

(6.13)

(6.14)

(6.15)

{6.16)

617
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(a) composites with rectangular fibers (Fig. 1),

B, = sin [7(a — y)n.] sin [7(B — 8)m,] B,= sin [7(8 — 8)m.]

m(a =) m(B-8 '’ S w(B-8
B, = sin [7(a — ‘Y)nz], 6.18)
3 —__77(01 =) 5

(b) composites with elliptical fibers (Fig. 2),

1=B,=B;= m2Jy(R) — (6.19)
2 m;
2{@-ri+[e-92])
n2
In equation (6.15),
T =8"®S. (6.20)
The dimensionless upper bound given by (6.15) is defined by
Vg = {XRalzﬁ/Cun}uz- (621)

Numerical results are presented in Table 2 for square fibers, i.e. (bo/b) = 1, for rectangular
fibers, i.e. (b2/b1) = (3/2), for circular fibers, and for elliptical fibers, i.e. (bo/b,) =2. All these
results are for 8 =3, (CH,/C{M) =100, (bi/a)) =3, n, =(a;/az) =1 and M’ = 1. The Poisson
Ratio of the two constituents is taken to be 0-3. This table lists, for the indicated values of the
wave number Q, the first five eigenfrequencies calculated from the new quotient, v, together
with their upper bounds calculated from (4.7) and (6.21). For comparison, the results obtained
from the Rayleigh quotient (2.8) are also listed. Note that, for each value of Q, only the first
approximate vz was shown in Section 4 to be an upper bound for the corresponding exact
eigenvalue. This situation and the bounds can be improved as follows.

Upper bounds for second and higher eigenvalues. Consider the Rayleigh quotient (4.7) and
choose for the test function equation (4.30) in which & are given by

=M’
=) _ S}sﬂ)(P)ei(qx,+2mX,+21rﬂx2)’ (6.22)

a,f=0

where S are components of the vector S®’ obtained from equation (6.2),. Minimization of Ag
with respect to the unknown coefficients £ now yields upper bounds for QM'+1)= M first
eigenvalues. In Table 2 these now bounds are denoted by v%.

Lower and upper bounds when p = const. In this case the new quotient yields upper bounds
for each of the first M = 2M' + 1 eigenvalues, as was shown in Remark 7; see equation (4.29). To
obtain lower bounds, one may use the result of Remark 6, inequality (4.20). To this end, one
calculates the quantity H, equations (4.19) and (4.25), arriving at

R SO
VN2 (012P/C11|1) ’

d2

. - H
= —a——— H:—
H (a, plcnn)3 H, AN



638 S. NEMAT-NASSER, F. C. L. Fu and S. MINAGAWA

Table 2. Fiber-reinforced composites. Eigenfrequency v and its upper bounds for first five modes: M’ = 1,
8 =3,(C%,/C%y) = 100, both Poisson's ratios = 0-3, (a,/a,) = 1, th//a) =

%= 1, Square fibers %= 3, Rectangular fibers
1 1
New Equation Upper Rayleigh New Equation Upper  Rayleigh
quotient @.nt bound quotient | quotient a.nt bound  quotient
Q Un Vr 734 Vg Vn Vg % ¥

0-124 0-129 0-129 0-214 0-110 0115 0115 0-246
0-236 0-245 0245 0-469 0-208 0218 0217 0-468
1-0 0-627 0-696 0688 1-510 0-565 0-617 0-614 2:219
0-825 0-852 0-850 2:292 0-764 0-792 0-791 2:994
0-832 0-873 0-872 2307 0-865 0-970 0-963 3-031

0-241 0252 0-251 0-433 0-208 020" 0220 0-463
0-448 0-471 0-470 0-884 0-389 0-412 0-410 0-872
20 0-553 0-602 0-59 1-341 0-524 0-569 0-566 2109

0-852 0-881 0-879 2203 0-778 0814 0-813 2786
0-867 0-928 0-924 229 0-856 0-959 0-955 2:820

Z—2= 1, Circular fibers ;L’ =2, Elliptical fibers
1 H

0-134 0-140 0-140 6178 0-107 0-113 0-112 0-196
0-253 0-264 0-263 0-404 0-201 0213 0212 0-380
10 0-694 0-752 0-743 1-508 0-636 0-679 0-674 2-621
0-839 0-870 0-869 1-696 0-736 0-780 0-780 2:637
0-864 0-922 0919 1727 0-817 0-910 0-905 2778

0-262 0-274 0-274 0-360 0-200 0-213 0212 0-371
0-485 0-512 0-510 0-764 0375 0-3%9 0-398 0-708
240 0-597 0636 0-631 1271 0-576 0-611 0-608 2409
0-875 0-904 0-904 1-664 0762 0-810 0-809 2528
0911 0-984 0-975 1739 0-808 0-900 0-897 2642

1For each value of Q, only the first eigenvalue calculated from (4.7) will in general be an upper bound for
the corresponding exact eigenvalue.

I_'I_ zﬁ s Cuu -1 + - S (Cun - 1)722 B
= T e~ e . 2
apgsto M+ AChn wiy=0 A1t A2Cin
arxyf#A8 a=y,B%8
=M’ =M’
(Cin— 1)
+ S—="——x—"B,+ S, 6.23
afrt=0 A1+ ACun a.3%=0 ( )
a®tyf=8 a=yRB=8

where

- QD [¢)) — 2, 1 (2]
C!Ill - Cllll/Clllln Cll22— C(11)22/C(ll)llg C12l2: Clz)lzllc(lll)llq

5 ={(@+2ma)Q-+2m)+ 22 2mpn. 2, |

X {STHQ +2ma) + SEQmBnIHSTTHQ + 27y) + S1*(2wdn, )}

+{Cunl2mBna)(Q + )+ S22(Q + 2ma)2mén.) |



Table 3. Fiber-reinforced composites. Lower and upper bounds for first three eigenfrequencies: M' =2, § = 1, both Poisson’s ratios = 0-3,

n, = l;(b:fal)“’:f

23: 1, Square fiber

—i-? =3, Rectangular fiber
1

C(tzx’n C?{‘n =4 Cﬁ’u C(xll)n =10 ?\’n C‘\‘l’lll =4 C(lzl)ll/C‘I’l)H = 1
Upper Upper Upper Upper
Lower  bound Lower  bound Lower  bound Lower  bound
bound or bound or bound or bound or
Equation new  Rayleigh | equation  new  Rayleigh | equation  new  Rayleigh | equation  new  Rayleigh
(4.20) quotient quotient { (4.20) quotient quotient | (4.20)  quotieat quotient | (4.20)  quotient quotient
P Un x v Y Ve v Uy Vr yt Vn r
0-45 0-45 047 0-33 034 036 0-43 0-44 0-45 030 0-32 0-35
10 085 0-86 0-89 0-64 0-65 0-70 0-82 082 0-86 0-59 0-60 0-66
2:20 236 2:42 1-38 1-76 1-86 1-96 2:30 2-43 0-33 1-66 1-98
0-89 o9 0-93 0-65 0-68 072 0-85 0-86 090 0-59 0-63 0-68
20 147 170 175 0-58 1-28 £-37 1-41 1-62 169 0-58 118 127
1-90 197 2:03 132 1-49 162 1-83 192 204 11 142 7
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Table 4. Fiber-reinforced composites. Lower and upper bounds for first three eigenfrequencies: M’ = 2, 6 = 1, both Poisson’s ratios = 0-3,

=1, (bfay) =}

22~ 1, Circular fibers B2 2, Eliptcal fibers
H H
C(lzl)ulcll?ll =4 Cﬁ)uilc{lll)n =10 {IZI)HIC(Ill)ﬂ =4 (Jl;jullcﬁ)n = 10
Upper Upper Upper Uppet
Lower  bound Lower  bound Lower  bound Lower  bound
bound or bound or bound or bound or
equation new  Rayleigh | equation  new  Rayleigh | equation new  Rayleigh | equation new  Rayleigh
4.20) quotient quotient | (4.20)  quotient quotient | (4.20) quotient quotient| (420} quotient quotient
P Y P " ¥n e P . r p' T Pr
0-46 0-46 0-47 0-35 0-36 038 0-42 0-43 0-45 0-29 0-31 0-34
10 087 0-87 090 0-67 0-68 072 0-80 0-81 0-84 0-57 0-59 0-63
2:28 42 2:48 1-51 1-87 1-95 2-06 232 2:44 0-97 1-69 195
0-92 0-93 495 0-69 072 075 -84 0-85 0-88 0-38 061 0-63
20 158 174 77 0-86 135 141 1-44 1-60 165 080 115 122
196 200 2-06 143 1-56 166 1-85 1-93 203 120 1-43 1-67
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X {S(Q +2ma) + S5EQmBn HSTTHQ +2my) + SB*Q2wdn, )}

+{ Cunt@ + 2ma)mn, )+ S22 (Q + 2wy 2, )}

X{STH(Q +2ma) + STEQmPn. HSTHQ + 27y) + SH*Q2mdn, )}

+ {(277Bno)(21'r8no) + %m(Q +27a)(Q + 2177)}

X{STE(Q +2ma) + S5FQmPn. )HS*(Q + 2my) + SE*(2wén., )}. (6.24)

Inequality (4.20) then yields the desired lower bounds. This is illustrated in Table 3 for square and
rectangular, and in Table 4 for circular and elliptical fibers. In both these tables, 8 =1, M' =2,
(ai/ax) =1, (bi/a1) = (1/2), and both Poisson’s ratios are equal to 0-3. Reasonably accurate lower
bounds for only the first three eigenvalues can be obtained from inequality (4.20) when M’ =2,
whereas accurate upper bounds for the first M’ + 1)’ eigenvalues are given by the new quotient.
These bounds further suggest that the new quotient is indeed an effective computational tool for
this class of problems.

It should be noted that when the elasticity tensor Cyu is constant but the mass-density p is
variable, admitting discontinuities, and when the test functions (2.21) are used, then the new
quotient reduces to the displacement Rayleigh quotient (2.8) and hence yields upper bounds (see
Remark 8). These bounds are then much better than those obtained from the stress Rayleigh
quotient (4.7) by a Rayleigh-Ritz procedure. This is illustrated in Table S for a layered composite.

Table 5. Layered composites. Comparison between the new quotient (2.11), the displacement Rayleigh quotient (2.8), and the
stress Rayleigh quotient (4.7): M’ = 1, n, = n, =3, and p,/p, = 8 and 7,/7, = ¥ as indicated

8=1,y=100 8=100, y=1
Displacement Stress Displacement Stress
New Rayleigh Rayleigh New Rayleigh Rayleigh
quotient quotient Quotient quotient quotient quotient
Q  Exact Un Ve Vr Exact Un Pr r
0-20 0-20 0-46 0-20 0-99 0-99 0-99 235
10 1-08 118 532 1-18 5-48 5-98 5-98 26-86
179 274 7-31 2-74 9-05 13-83 13-83 36-92
0-37 0-37 0-89 0-37 1-89 1-89 1-89 4-50
2:0 0-96 1-05 4-46 1-05 4-88 530 5-30 22-54
1-87 298 8:38 2:98 9-46 15-05 15-05 42-32

In this table two cases are compared: (1) when 8 =1, i.e. p is constant, but y = 100; (2) when
y =1, i.e. m is constant, but # = 100. In the first case the new quotient A~ reduces to the stress
Rayleigh quotient Ag, equation (4.7), whereas in the second case Ax reduces to the displacement
Rayleigh quotient Az, equation (2.8). In either case one obtains upper bounds. In general,
however, the new quotient gives neither upper nor lower bounds.
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